
MSpec: Automated
Safety Reasoning for OS Compartmentalization

Vlad-Andrei Bădoiu
University Politehnica of Bucharest

Bucharest, Romania

Abstract
An increasingly vast array of securitymechanisms that can

be used to improve the safety of software including address-
space isolation, CPU protection levels, memory-protection
keys, TEEs, capabilities, aswell as software variants including
control-flow and data-flow integrity, address-sanitization and
so forth. How should we use these mechanisms, and in which
combination, to ensure that our software is safe and achieves
the best possible performance? The status quo chooses safety
mechanisms manually, at design time, but this sub-optimal in
many ways. In this thesis our aim is to automatically decide
which mechanisms should be used to make such an operat-
ing system safe. We propose MSpec, a domain-specific lan-
guage and a tool that performs automatic safety reasoning
and present preliminary results.

1 Introduction
The operating systems (OS) security scene is rapidly evolv-

ing. We have many security mechanisms available on an av-
erage OS, ranging from hardwaremechanisms (e.g. MPK [13],
CHERI [14], EPT) to software-based (e.g CPI [5], CFI [1], SFI,
ASAN [11]). Mechanisms can be used to create compartments
and enforce different properties such as read/write/execute
policies. Given a set of components, how should we apply
these security mechanisms to them?Which OS components
should be placed in different MPK compartments, which
should be hardened using ASAN, and so forth? Further, flex-
ible isolation [7] has shown us that the configuration space
resulting from mixing mechanisms and creating compart-
ments (e.g. VMs in the case of EPT) grows exponentially, with
hundreds of configurations(mapping of security mechanisms
to components) available for only a few OS components and
mechanisms. However, reasoning about the resulting safety
properties of a given compartmentalization strategy is cur-
rently done manually and is both tedious and error prone. [6]
In this PhD thesis we propose an automated approach to

safety reasoning based on a new Domain Specific Language
(DSL) that models the behaviour of OS components and the
interaction between themwhile taking into account which
safety mechanisms are used. Each component is described by
a set of safety properties—which explain effects of running
this component may have on other components—and a set of
requirements that it expectsothers toconformwith.Eachcom-
ponent comes with a set of safety properties which is dictated
by the language it is implemented in and its complexity; for

instance, a componentwritten inC and accessingmemory via
pointers may, in the worst case, write to anymemory address.
A safety property allow us to express this potential behaviour
and, in conjunction with the safety requirements of other
components, we can automatically decide if a given configu-
ration is safe or not.When a security mechanism is applied to
a component, itmodifies (strengthens) its safety properties. In
MSpec we model the application of security mechanisms to a
component as a transformation which alters the properties of
the component they apply to. Thus, by using a set of available
transformationswemodel theeffectsof applyingvarious secu-
rity mechanisms to components, with the end goal of finding
configurations that satisfy all the constraints required by each
component. Configurations are partially ordered, all deriving
configurations of a solution are solutions but with a inferior
performance. To be able to compare any two configurations
we introduce a cost function that estimates the overhead of
a configuration based on the used transformations.

To showcase the applicability of our work we prototyped a
tool called MSpec that can be easily integrated into the build
system of an OS to automatically generate configurations
given the components, transformations and strategies. We
integrated MSpec with FlexOS [6, 7] due to the high config-
uration spaced enabled by its flexible isolation approach.

MSpec differs from other compartmentalization solutions
through generality. Other solutions only model the isolation
property of somemechanisms and use it only for selected use
cases such as least privilege[9, 10].

2 Overview
In Figure 1 we present an overview of MSpec. The core of

MSpec is a domain-specific language that enables the spec-
ification of component properties and requirements in a fine-
or a coarse-grainedmanner. Fine-grained properties can used
to specify byte-level memory properties, whereas coarse-
grained refers to component-level overall properties. Cur-
rently MSpec properties are specified in the context of a
specific compartment. For components defined at function
level we target MSpec based code annotations. Kernel and
application components are either described in MSpec by
the corresponding developers or a default specification is
provided based on the programming language (e.g. memory
safety in safe Rust code) or even produced automatically by
the compiler or an analysis tool. For instance, a verified co-
operative scheduler written in Dafny [8], has the following
coarse-grained MSpec specification:



Conference’17, July 2017, Washington, DC, USA Vlad-Andrei Bădoiu

[Memory Access] ::= R, W
[Call] ::= X
[API] ::= (thread_add, SYMB) (thread_remove, SYMB)\

(schedcoop_yield, SYMB)
[Requires] ::= X

The component properties specified are that (1) it requires
read/write access over shared memory, data that the sched-
uler is supposed to access and is shared via pointers; (2) it will
execute according to the expected control flow, guaranteed
by Dafny; (3) it exports an API consisting of three symbols
to outer components; and (4) the only capability provided
to outer components is the execution of current component
code via the exposed symbols.
Transformation specification . Similarly, we model how
a security mechanism affects the safety of a component us-
ing transformations. A transformation can also specified in
MSpec and captures how component properties change as
well as the way in which mechanisms create compartments
and the relation between them.

Given a set of available transformations and the properties
and requirements of each component, MSpec is able to auto-
matically find configurations that satisfy all the constraints.
The user can also specify additional constraints not captured
by the component safety requirements (e.g. do not use trans-
formation X alongside Y - shown as (C) in Fig. 1).
To reason about the safety of a configuration, MSpec re-

duces the problem to an adapted graph colouring problem
where each colour represents a compartment and it’s attached
set of transformations. In our representation, nodes represent
components whereas edges are interaction between compo-
nents. Nodes can have multiple colours attached to them
because we can have nested compartments (e.g. anMPK com-
partment in an EPT compartment). A solution is a colour
configuration where all nodes with the same colour are com-
patible. We also target overall compatibility between colors.
(e.g. the least permissive properties from container X are
compatible with the most constrained requirements from
container Y) Since there are typically many safe solutions, we
want to find the one with the best expected performance. To
this end, we introduce a cost function (e.g. number of com-
partments used) that orders configurations based on their
expected performance (D in Fig. 1).
The way we specify the safety properties of a component

can help us solve different problems usingMSpec. The default
behaviour of MSpec is the safety oriented strategy, where we
use the properties of the language a component is written in
to define its safety properties (e.g. code written in Rust will
be memory safety as long as no other component overwrites
its memory). A second way to define properties is vulnera-
bility oriented: by modelling how a vulnerability (e.g. buffer
overflow) changes the properties of a component, we can ask
MSpec for a configuration that ensures other components’ re-
quirements are satisfied - i.e. a configuration which mitigates
the vulnerability.

Components
prop (A)

Transformations (B)

Graph 
Colouring

Strategy (E)

Cost
function (D)

Solutions

User
constraints (C)

Search Solution

Figure 1.Overview of MSpec

3 Preliminary results
Currently, we have integrated MSpec with FlexOS and are

working on safety reasoning and its implications in zero code
vulnerability patching. Our tool is able to create configura-
tions where components with different properties (e.g. Rust,
Dafny scheduler, plan C) have their safety guarantees hold
at runtime. We have measured the research space reduction
when using MSpec with FlexOS. In the scenario of four com-
ponents, MPK and KASAN/Stack Protector/CFI we were able
to reduce from thousands of configurations to only two equiv-
alent configurations. A second path we explored is automatic
vulnerability mitigation. We were able to mitigate CVE-2014-
0160 named Heartbleed by modelling the vulnerability into
the DSL of the affected components.

4 Further work
One of the key issue that we plan to tackle is the search

space explosion problem. Since compartmentalization mech-
anisms are partitioning a set of n objects into k nonempty
subsets, the complexity is given by Stirling partition num-
ber which is exponential. We will explore several algorithms
and the usage of a SMT solver for finding safe configurations
quickly. Additionally, we will improve MSpec to capture the
behavior of mechanisms such as KASAN as well as pre- and
post- conditions for function calls. Finally, we plan to inte-
grate MSpec with at least one other popular OS such as Linux
to showcase its generality and applicability

5 Related work
Orthogonal to our work, Caramine et al. [2] offers a solid

foundation for reasoning about security of practical compart-
mentalized applications but only targets simple applications
written in the programming language defined in the paper.
SOAAP [4] proposes a system to explore software’s compart-
mentalization space using static/dynamic analysis; however,
this work targets monolithic userspace codebases and has yet
to gain real world usage due to its complexity. uSCOPE [10]
proposes a least privilege compartmentalization strategy but
lacks generality. Enclosure [3] used a DSL based approach
to isolate libraries using MPK but only targets interpreted
languages such as Python. Zhang et all propose automatic
isolation based on CVEs [15]. Tsampas et all [12] propose
discuss automatic compartmentalization of C programs on
capability machines.



MSpec: Automated Safety Reasoning for OS Compartmentalization Conference’17, July 2017, Washington, DC, USA

References
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009.

Control-flow integrity principles, implementations, and applications.
ACM Transactions on Information and System Security (TISSEC) 13, 1
(2009), 1–40.

[2] CarmineAbate, ArthurAzevedo deAmorim, Roberto Blanco, AnaNora
Evans, Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Benjamin C
Pierce, Marco Stronati, and Andrew Tolmach. 2018. When good
components go bad: Formally secure compilation despite dynamic
compromise. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1351–1368.

[3] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and
Edouard Bugnion. 2021. Enclosure: Language-Based Restriction of
Untrusted Libraries. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (Virtual, USA) (ASPLOS 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 255–267.
https://doi.org/10.1145/3445814.3446728

[4] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David
Chisnall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann,
and Alex Richardson. 2015. Clean Application Compartmentalization
with SOAAP. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (Denver, Colorado, USA)
(CCS ’15). Association for Computing Machinery, New York, NY, USA,
1016–1031. https://doi.org/10.1145/2810103.2813611

[5] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Candea,
R Sekar, and Dawn Song. 2018. Code-pointer integrity. In The
Continuing Arms Race: Code-Reuse Attacks and Defenses. 81–116.

[6] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Teodor-
escu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre
Olivier. 2021. FlexOS: Towards Flexible OS Isolation. arXiv preprint
arXiv:2112.06566 (2021).

[7] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Ştefan Teodorescu, Pierre Olivier,
Tiberiu Mosnoi, Răzvan Deaconescu, Felipe Huici, and Costin Raiciu.
2021. FlexOS: Making OS Isolation Flexible. In Proceedings of the
Workshop on Hot Topics in Operating Systems (Ann Arbor, Michigan)
(HotOS ’21). Association for Computing Machinery, New York, NY,
USA, 79–87. https://doi.org/10.1145/3458336.3465292

[8] K Rustan M Leino. 2010. Dafny: An automatic program verifier
for functional correctness. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning. Springer, 348–370.

[9] Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard
Shrobe, Mathias Payer, Hamed Okhravi, and Nathan Burow. [n. d.].
Preventing Kernel Hacks with HAKC. ([n. d.]).

[10] Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai
Pandey, Vasileios P. Kemerlis, Mathias Payer, Adam Bates, Jonathan M.
Smith, Andre DeHon, and Nathan Dautenhahn. 2021. uSCOPE: A
Methodology for Analyzing Least-Privilege Compartmentalization in
Large Software Artifacts. In 24th International Symposium on Research
in Attacks, Intrusions and Defenses (San Sebastian, Spain) (RAID ’21).
Association for Computing Machinery, New York, NY, USA, 296–311.
https://doi.org/10.1145/3471621.3471839

[11] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. Addresssanitizer: A fast address sanity checker.
In 2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12).
309–318.

[12] Stylianos Tsampas, Akram El-Korashy, Marco Patrignani, Dominique
Devriese, Deepak Garg, and Frank Piessens. 2017. Towards automatic
compartmentalization of C programs on capability machines. In
Workshop on Foundations of Computer Security 2017. 1–14.

[13] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. 2019. {ERIM}: Secure,
efficient in-process isolation with protection keys ({MPK}). In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 1221–1238.

[14] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI capability
model: Revisiting RISC in an age of risk. In 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA). IEEE, 457–468.

[15] Ze Zhang, Qingzhao Zhang, Brandon Nguyen, Sanjay Sri Vallabh
Singapuram, Z Morley Mao, and Scott Mahlke. 2020. Automatic
Feature Isolation in Network Protocol Software Implementations. In
Proceedings of the 2020 ACMWorkshop on Forming an Ecosystem Around
Software Transformation. 29–34.

https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/2810103.2813611
https://doi.org/10.1145/3458336.3465292
https://doi.org/10.1145/3471621.3471839

	Abstract
	1 Introduction
	2 Overview
	3 Preliminary results
	4 Further work
	5 Related work
	References

